3.5.4 \(\int \frac {\sec (c+d x) (B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\) [404]

Optimal. Leaf size=126 \[ \frac {(5 B+19 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(B-C) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {(5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}} \]

[Out]

1/32*(5*B+19*C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)-1/4*(B-C)*tan(
d*x+c)/d/(a+a*sec(d*x+c))^(5/2)+1/16*(5*B-13*C)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.23, antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {4157, 4093, 4085, 3880, 209} \begin {gather*} \frac {(5 B+19 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {(5 B-13 C) \tan (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac {(B-C) \tan (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

((5*B + 19*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - ((B
- C)*Tan[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) + ((5*B - 13*C)*Tan[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])
^(3/2))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4085

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(A*b - a*B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[(a*B*m + A*b*
(m + 1))/(a*b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, A, B, e, f}, x
] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] && LtQ[m, -2^(-1)]

Rule 4093

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(b*f*(2*m + 1))), x] + Dist[1/(b^2*(
2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b*B*(2*m + 1)*Csc[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4157

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rubi steps

\begin {align*} \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx &=\int \frac {\sec ^2(c+d x) (B+C \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\\ &=-\frac {(B-C) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {\int \frac {\sec (c+d x) \left (-\frac {5}{2} a (B-C)-4 a C \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {(B-C) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {(5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(5 B+19 C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {(B-C) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {(5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac {(5 B+19 C) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=\frac {(5 B+19 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(B-C) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {(5 B-13 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.46, size = 131, normalized size = 1.04 \begin {gather*} \frac {\left (2 \sqrt {2} (5 B+19 C) \tanh ^{-1}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x)+\sqrt {1-\sec (c+d x)} (B-9 C+(5 B-13 C) \sec (c+d x))\right ) \tan (c+d x)}{16 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

((2*Sqrt[2]*(5*B + 19*C)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d*x)/2]^4*Sec[c + d*x]^2 + Sqrt[1 -
Sec[c + d*x]]*(B - 9*C + (5*B - 13*C)*Sec[c + d*x]))*Tan[c + d*x])/(16*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c
+ d*x]))^(5/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(601\) vs. \(2(107)=214\).
time = 14.56, size = 602, normalized size = 4.78

method result size
default \(-\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (-1+\cos \left (d x +c \right )\right ) \left (5 B \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right )+19 C \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right )+10 B \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right )+38 C \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right ) \sin \left (d x +c \right ) \cos \left (d x +c \right )+5 B \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right ) \sin \left (d x +c \right )-2 B \left (\cos ^{3}\left (d x +c \right )\right )+19 C \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right ) \sin \left (d x +c \right )+18 C \left (\cos ^{3}\left (d x +c \right )\right )-8 B \left (\cos ^{2}\left (d x +c \right )\right )+8 C \left (\cos ^{2}\left (d x +c \right )\right )+10 B \cos \left (d x +c \right )-26 C \cos \left (d x +c \right )\right )}{32 d \left (1+\cos \left (d x +c \right )\right ) \sin \left (d x +c \right )^{3} a^{3}}\) \(602\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/32/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))*(5*B*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+
c)*cos(d*x+c)^2*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))+19*C*(-2*cos(d*x
+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)^2*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+
c)+1)/sin(d*x+c))+10*B*sin(d*x+c)*cos(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*ln(((-2*cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))+38*C*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*ln(((-2*cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*sin(d*x+c)*cos(d*x+c)+5*B*(-2*cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*sin(d*x+c)-2*B*cos(
d*x+c)^3+19*C*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x
+c)+1)/sin(d*x+c))*sin(d*x+c)+18*C*cos(d*x+c)^3-8*B*cos(d*x+c)^2+8*C*cos(d*x+c)^2+10*B*cos(d*x+c)-26*C*cos(d*x
+c))/(1+cos(d*x+c))/sin(d*x+c)^3/a^3

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sec(d*x + c)/(a*sec(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [A]
time = 2.83, size = 475, normalized size = 3.77 \begin {gather*} \left [-\frac {\sqrt {2} {\left ({\left (5 \, B + 19 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (5 \, B + 19 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, B + 19 \, C\right )} \cos \left (d x + c\right ) + 5 \, B + 19 \, C\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left ({\left (B - 9 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (5 \, B - 13 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {\sqrt {2} {\left ({\left (5 \, B + 19 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (5 \, B + 19 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, B + 19 \, C\right )} \cos \left (d x + c\right ) + 5 \, B + 19 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, {\left ({\left (B - 9 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (5 \, B - 13 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[-1/64*(sqrt(2)*((5*B + 19*C)*cos(d*x + c)^3 + 3*(5*B + 19*C)*cos(d*x + c)^2 + 3*(5*B + 19*C)*cos(d*x + c) + 5
*B + 19*C)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c)
+ 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*((B - 9*C)*cos(d*x + c
)^2 + (5*B - 13*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 +
 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1/32*(sqrt(2)*((5*B + 19*C)*cos(d*x + c)^3 + 3*(5*B
+ 19*C)*cos(d*x + c)^2 + 3*(5*B + 19*C)*cos(d*x + c) + 5*B + 19*C)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c)
 + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*((B - 9*C)*cos(d*x + c)^2 + (5*B - 13*C)*cos(d*x
+ c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3
*a^3*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sec(c + d*x)**2/(a*(sec(c + d*x) + 1))**(5/2), x)

________________________________________________________________________________________

Giac [A]
time = 1.70, size = 170, normalized size = 1.35 \begin {gather*} \frac {\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} {\left (\frac {2 \, \sqrt {2} {\left (B a^{5} - C a^{5}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{8} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {\sqrt {2} {\left (3 \, B a^{5} - 11 \, C a^{5}\right )}}{a^{8} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {\sqrt {2} {\left (5 \, B + 19 \, C\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{32 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

1/32*(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*(2*sqrt(2)*(B*a^5 - C*a^5)*tan(1/2*d*x + 1/2*c)^2/(a^8*sgn(cos(d*x +
 c))) + sqrt(2)*(3*B*a^5 - 11*C*a^5)/(a^8*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c) - sqrt(2)*(5*B + 19*C)*log(
abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*a^2*sgn(cos(d*x + c))))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\cos \left (c+d\,x\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + a/cos(c + d*x))^(5/2)),x)

[Out]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + a/cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________